#### New Frontiers in Atmospheric Sensing from Small Satellites: TROPICS and CREWSR

 $\bigotimes$ 

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is unlimited.

This material is based upon work supported by the National Aeronautics and Space Administration under Air Force Contract No. FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration.

© 2023 Massachusetts Institute of Technology.



~4 m<sup>2</sup> aperture

William J. Blackwell MIT Lincoln Laboratory

September 26, 2023 NASA GESTAR Seminar







#### New Frontier #1 in Earth Observing: Better Persistence Through Constellations

Traditional Approach: Small Number of Big, Multifunction Satellites

• Large: 2100 kg

- Expensive: ~\$2B/Satellite
- Three polar orbits with ~4 hr revisit rate
- Need international partners and multiple US departments





• Small: <10 kg

**Improved Approach:** 

Large Number of Small, Specialized Satellites

- Affordable: ~\$1M/Satellite
- Constellation yields
  ~30 min revisit rate
- Permits rapid infusion of new technologies



#### New Frontier #2 in Earth Observing: Configurable Sensors that are Collaborative & Intelligent

#### **Spatial Configurability**



Highest resolution reserved for spatially dynamic areas of the scene

# Spectral Configurability

Molecular spectroscopy versus coarse-band imaging

#### Look-Angle Configurability



Multiple observations from different vantage points permits tomography

#### Case Study #1: TROPICS Earth Venture Mission to study Tropical Cyclones



Need to measure 4-D temperature, humidity and precipitation to better understand hurricane science and therefore improve the forecast models



## **Methods for Sensing Tropical Cyclones**



Radar



**Dropsonde from Aircraft** 



Vis/IR Imaging & Sounding



**Passive Microwave Sounding** 

- Passive microwave sounding can provide measurements of 3-D storm structure that is essential to accurately predict future path
- Key Measurements:
  - 3-D Temperature
  - 3-D Humidity
  - 3-D Precipitation



#### Microwave Observations have a Large Impact on Tropical Cyclone Track and Intensity Forecasts



**Track Forecast Improvement (36 hr)** 

#### **Intensity Forecast Improvement (36 hr)**

| NASA | A GESTAR Seminar - 6 |
|------|----------------------|
| WJB  | 9/26/2023            |

Plots derived from data in Magnusson, L. et al. (Oct 2021). Tropical cyclone activities at ECMWF. ECMWF Tech Memo 888







#### Progression of MIT LL Microwave Atmospheric Sounding CubeSats





## Key Enabling Technology: CubeSat Sounders



A. Crews, W. Blackwell, et al., "Initial Radiance Validation of the Microsized Microwave Atmospheric Satellite-2A," in *IEEE Transactions on Geoscience and Remote Sensing*, doi: 10.1109/TGRS.2020.3011200.







Science Mission Directorate Earth Venture Program EVI-3

#### TROPICS: <u>Time-Resolved Observations of Precipitation</u> structure and storm <u>Intensity with a Constellation of Smallsats</u>

William J. Blackwell (MIT LL), Principal Investigator Scott A. Braun (NASA GSFC), Project Scientist



TROPICS will provide microwave observations of tropical cyclones with <60 minute revisit to better capture storm dynamics and improve forecasting

> Payload scans at 30 RPM

TROPICS Pathfinder satellite launched June 30, 2021 Four constellation vehicles launched May 2023



Constellation of Four 3U CubeSats MIT LL payload; BCT bus; KSAT downlink

High-resolution microwave data resolves tropical cyclone eye and rain structure











TROPICS Microwave Sounder 12 channels (90-205 GHz) Temperature, Moisture, Rain Rate



## **TROPICS Mission Overview**



Two orbital planes (33° inclination at 550 km altitude) with two Cubesats in each will provide < 60 minute median revisit rate

Africa



- Rocket Lab was awarded two launches from Mahia, NZ into two orbital planes
- Launched on May 8th & 26th, 2023
- Mission has four CubeSats with a year-long science operations
- Data latency 45 minutes

NASA GESTAR Seminar - 12

WJB 9/26/2023

#### Backup Ground Stations: Mauritius, West Australia, & Puertollano

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

GES DISC

😿 EARTH**DATA** 



#### TROPICS Satellite ("CubeSat") (TROPICS Millimeter-wave Sounder = TMS)

- 3U CubeSat: 10 cm x 10 cm x 36 cm
- Mass: 5.4 kg; Power: 15 W (payload is 3W)
- Blue Canyon Technologies bus
- LL passive millimeter-wave payload
- Innoflight SCR-100 S-band radio

| TMS<br>Channel | Central<br>frequency | ATMS<br>Channel | MHS<br>Channel | MWHS-2<br>Channel | Beamwidth<br>(degrees)<br>Down/Cross |  |
|----------------|----------------------|-----------------|----------------|-------------------|--------------------------------------|--|
| 1              | 91.655±1.4 GHz       | 88.2 GHz        | 89.0 GHz       | 89.0 GHz          | 3.0/3.17                             |  |
| 2              | 114.50 GHz           | -               | -              | 118.75±5.0        | 2.4/2.62                             |  |
| 3              | 115.95 GHz           | -               | -              | 118.75±3.0        | 2.4/2.62                             |  |
| 4              | 116.65 GHz           | -               | -              | 118.75±2.5        | 2.4/2.62                             |  |
| 5              | 117.25 GHz           | -               | -              | 118.75±1.1        | 2.4/2.62                             |  |
| 6              | 117.80 GHz           | -               | -              | 118.75±0.8        | 2.4/2.62                             |  |
| 7              | 118.24 GHz           | -               | -              | 118.75±0.3        | 2.4/2.62                             |  |
| 8              | 118.58 GHz           | -               | -              | 118.75±0.2        | 2.4/2.62                             |  |
| 9              | 184.41 GHz           | 183.31±1.0      | 183.31±1.0     | 183±1.0           | 1.5/1.87                             |  |
| 10             | 186.51 GHz           | 183.31±3.0      | 183.31±3.0     | 183±3.0           | 1.5/1.87                             |  |
| 11             | 190.31 GHz           | 183.31±7.0      | 190.31         | 183±7.0           | 1.5/1.87                             |  |
| 12             | 204.8 GHz            | -               | -              | -                 | 1.35/1.76                            |  |



| Beamwidth<br>(degrees) | Nadir<br>Footprint<br>Geometric | Measured |
|------------------------|---------------------------------|----------|
| 2 0/2 17               |                                 |          |
| 3.0/3.17               | 29.0                            | 0.00     |
| 2.4/2.62               | 24.1                            | 0.96     |
| 2.4/2.62               | 24.1                            | 0.82     |
| 2.4/2.62               | 24.1                            | 0.86     |
| 2.4/2.62               | 24.1                            | 0.79     |
| 2.4/2.62               | 24.1                            | 0.81     |
| 2.4/2.62               | 24.1                            | 0.90     |
| 2.4/2.62               | 24.1                            | 1.03     |
| 1.5/1.87               | 16.9                            | 0.58     |
| 1.5/1.87               | 16.9                            | 0.55     |
| 1.5/1.87               | 16.9                            | 0.53     |
| 1.35/1.76              | 15.2                            | 0.52     |





## **Satellite Overview**



NASA GESTAR Seminar - 14 WJB 9/26/2023



## **Scan Profile for TROPICS**

- Rotation rate is 30 RPM (2 sec. period)
- 81 Earth Sector samples per scan
- 10 samples each in Space & ND Sectors
- Integration time: 8.333 msec (1/120 second)
- Spatial Information (at 550 km):
  - Beamwidth (FWHM):
    - W-band 3.0° DT (3.2° CT)
    - F-band 2.4° DT (2.62° CT)
    - G-band 1.5° DT (1.87° CT)
    - Sample spacing: 1.5°
  - Swath: ~2000 km
  - Nadir footprint diameter
    - W-band: 26-km DT, ~28-km CT
    - F-band : 22-km DT, ~24-km CT
    - G-band : 13.1-km DT, ~17.1-km CT









#### **TROPICS** Payload Details





#### **TROPICS** Radiometer Flight Hardware



**Radiometer back-end** processor ("WF-IFP")

**Payload control and** data handling board



180-205-GHz direct detection receiver

#### Leverages significant advancements funded by NASA ESTO



## **TROPICS Radiometer Payloads Yield Excellent Performance**





#### **Seven Flight Units Ready for Launch**







#### TROPICS Pathfinder (Qualification Unit) Launched June 30, 2021



Pathfinder "precursor" mission provided checkout of operations, ground links, data processing & science

Preliminary cal/val indicates that radiometric calibration performance is better than 1 K in all channels

NOAA-funded low-latency experiment conducted in April 2022

Data will be available to general public via GES-DISC





#### **Pathfinder's Twice-Daily Global Collections**



91.656 GHz – Channel 1 (W) – Daytime and Nighttime Mosaics



204.8 GHz – Channel 12 (G4) – Daytime and Nighttime Mosaics





TC Emnati, Feb 10, 2022, 92 GHz

What is the relationship between structural features of the storm and intensification?



TC Batsirai, Feb 5, 2022, 205 GHz



#### **TROPICS Data Addresses Critical Science Questions**



Ultimately, we want to show that TROPICS data will improve forecasting of tropical cyclone track and intensity

NASA GESTAR Seminar - 23 WJB 9/26/2023 LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY



# TROPICS Pathfinder Data Compares Favorably to State-of-the-Art Sensors



Super Typhoon Mindulle (Sep 26, 2021)



#### A More Detailed Look at 190 GHz vs 205 GHz (Super Typhoon Mindulle, Sep 27, 2021 05:10 UTC)



NASA GESTAR Seminar - 25 WJB 9/26/2023

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY



## **Near-Realtime TC Imagery and Data Assimilation**

- US Naval Research Laboratory has incorporated TROPICS into operational tropical cyclone (TC) imagery https://www.nrlmry.navy.mil/tcwe b/
- NRL is hosting imagery for TROPICS-03, TROPICS-05, & TROPICS-06, but on hold for TROPICS-01 (Pathfinder)
- Team is working toward providing imagery & data assimilation at
  - NOAA National Hurricane Center \_
  - Joint Typhoon Warning Center —
  - **NESDIS Common Cloud Framework**
  - **WMO WIS 2.0**
  - LANCE





240

250

260

270

280



## **TROPICS Near-Real-Time Data Flowchart**





## Level 1B Product Shows Negligible Drift over 2 Years



NASA GESTAR Seminar - 28 WJB 9/26/2023 LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY



#### Level 1B Departures from GEOS-5 are Relatively Small and Gaussian

TROPICS Pathfinder Clear-sky Ocean (Aug. 2021 to Jan. 2023)  $\pm$  15° Scan Angle  $\pm$  40° Lat.



NASA GESTAR Seminar - 29 WJB 9/26/2023

\* Converted from ND NEDT calibration sector (Gain x count std. dev) to 300K scene

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY





Wide variety of cases included here: clear, cloudy, land, and ocean







# Pathfinder Temp/Moisture Retrievals Meet Requirements (Cloudy, mostly non-precipitating atmospheres)

**TROPICS** Pathfinder





## Moisture Anomaly: Hurricane Ida, 8/28/2021





#### **Temperature Anomaly: Hurricane Ida, 8/28/2021**



40 50 60 70

Cross-Track Spot

#### **TROPICS** Retrievals $\Delta$ T (K) Minus Nearby Profile, TROPICS-NRT NN Height (km) r Cross-Track Spot



NASA GESTAR Seminar - 34 WJB 9/26/2023







#### Temperature Anomaly: Hurricane Sam, 9/27/2021





#### TROPICS Rain Rate Estimation On-par with State-of-the-Art Sounders



Reference: Y. You, et al., "Evaluating and Improving TROPICS Millimeter-Wave Sounder's Precipitation Estimates over Ocean," JGR: Atmospheres, 128 (16), e2023JD038697

#### Hurricane Idalia in US Gulf Coast (Aug 30, 2023)









## TC Jova (September 6, 2023)





## Hurricane Lee (Sep 12-13, 2023)



NASA GESTAR Seminar - 41 WJB 9/26/2023



## Hurricane Nigel (Overnight Sep 19-20, 2023) Cat2



NASA GESTAR Seminar - 42 WJB 9/26/2023

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY





LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY

NASA GESTAR Seminar - 43 WJB 9/26/2023

## Tropics Constellation Channel 01 2023-06-18 09:55





- The TROPICS Pathfinder satellite showed the compact TROPICS design performs comparably to state-of-the-art sounders
  - Lessons learned will help commission and operate constellation
- Boston-based Tomorrow.io has funded a Cooperative Research and Development Agreement with MIT LL to improve the payload, host on 6U bus, and deploy an initial constellation of 18 satellites





## Heavy Snowfall Over Central US on Oct 12, 2021



NASA GESTAR Seminar - 46 WJB 9/26/2023

Note: Snowfall is not a TROPICS PLRA data product

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY



## Tornadoes in Midwest USA, 10-11 Dec 2021







#### Configurable Reflectarray for Electronic Wideband Scanning Radiometry



- Enables large apertures from SmallSats
- Agile pointing and resolution

- Software-defined spectral resolution/coverage
- Multiple spatial beams and spectral bands

ESTO IIP has funded a prototype of ONE sub-panel



#### **Ratio of Aperture Area to Payload Mass**



NASA GESTAR Seminar - 49 WJB 9/26/2023



#### CREWSR Provides Improved Observing Capabilities Relevant to Many NASA Science Mission Areas

## **Earth Science High-Resolution** Atmospheric Sounding (23/31/50-58 GHz) Wind Speed/Direction (10/18/36 GHz) 30 35 40 45 **Polarimetric Imaging** (37 GHz)

#### **Planetary Science**

Lunar surface mapping (1-5 GHz, polarimetry)











00 200 temperature (°C)

#### Heliophysics



Lower thermospheric winds (118 GHz)



#### CREWSR Band Selection: 23.8 and 31.4 GHz (water vapor) & 50-58 GHz (temperature)





Figure 8-6: Absorption spectrum of the 60 GHz oxygen complex at an altitude of 20 km.

#### **CREWSR** supports (in principle) polarimetric sensing and RADAR



#### Agile Beam Pointing Enables Improved Vertical Sampling (Tomography) of the Atmosphere



LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY



#### 1976 US Standard Atmosphere



Solid lines: single angle (nadir); Dash lines: multiple angles (11);

LINCOLN LABORATORY MASSACHUSETTS INSTITUTE OF TECHNOLOGY



#### Agile Beam Resolution Enables Improved Horizontal Sampling of the Atmosphere



## Observing System Simulation Experiment now in progress to assess and optimize CREWSR configurability benefits







PT-CREWSR: 0.6m x 0.9m scanning reflectarray, brassboard radiometer, control, power supply, and interface electronics





#### Antenna "Unit Cell"

20 -

Unit Cell Design



#### **Unit Cell Reflection Performance**





## **RFIC Measurements**

Developed by Univ. California, San Diego

#### PNA-X (N5247A): 100MHz-67 GHz



Pout=-10 dBm

28 GHz









#### Summary of Progress (After Year 1 of 3): Key Performance Parameters



|                                                             | Threshold   | Objective                                        | Current Status                           |
|-------------------------------------------------------------|-------------|--------------------------------------------------|------------------------------------------|
| Frequency bands                                             | 50-58 GHz   | Low: 22-26GHz<br>Mid: 31-35GHz<br>High: 50-58GHz | 23.6-24GHz<br>31.3-31.6GHz<br>50-58GHz   |
| Beam Efficiency (co-<br>polarized power within<br>2.5*HPBW) | 90%         | 95%                                              | Low: 83%<br>Mid: 92%<br>High: 90% (mean) |
| Aperture Size                                               | 0.3m x 0.3m | 0.6m x 0.9m                                      | Planned fabrication:<br>0.6m x 0.9m      |
| DC power consumption per<br>6-channel RFIC                  | 1.2mW       | 0.2mW                                            | Mean: 1.2mW *                            |
| Phase shifter losses                                        | 4dB         | 3dB                                              | RMS: 4-5dB *                             |
| Beam update rate                                            | 1 kHz       | 55 Hz                                            | 5 Hz (for system power<br>estimates)     |

\* Measured on first MPW (RF only)



- CREWSR Advantages:
  - Temporal efficiency ( $\tau$ )
    - 25% "time on earth" = 6 dB / 2 = 3 dB
  - Spectral efficiency (B)
    - 3.188 / 8 = 4 dB / 2 = 2 dB



- CREWSR Disadvantages:
  - RFIC loss (T<sub>RCVR</sub>)
    - 4.0 dB
  - Antenna element loss (T<sub>RCVR</sub>)
    - 0.7 dB
  - Radiometer RF switch loss (T<sub>RCVR</sub>)
    - 0.7 dB

These "efficiency" and "loss" terms effectively cancel: CREWSR will offer noise performance at least as good as SOA, but with much LARGER APERTURE and ELECTRICALLY STEERED BEAM

**NEDT** = 
$$\frac{T_A + T_{RCVR}}{\sqrt{B\tau}}$$



## **Summary of Array Simulation Results**

| Frequency Band               | Directivity | HPBW         | Beam Efficiency,<br>Idealized | Beam Efficiency, Antenna Fields<br>Modeled |
|------------------------------|-------------|--------------|-------------------------------|--------------------------------------------|
| Low (24GHz)                  | 44 dBi      | 1.1°         | 95%                           | 83%                                        |
| Mid (31GHz)                  | 47 dBi      | <b>0.8</b> ° | 94%                           | 92%                                        |
| High (mean over<br>50-58GHz) | 51 dBi      | 0.5°         | 95%                           | 90%                                        |

- Idealized model: point sources for array, cos<sup>15</sup> taper for feed horns
- Model with antenna fields: includes simulated fields for feed horns, phase and amplitude response for "infinite" array





#### **Exploded View of Fixed Beam CREWSR Subpanel**





## **Structural-Thermal Grid Design**





- Antenna PCB and Control PCB connected across grid via pin headers
  - Using 2x2 SMT headers with 1mm spacing



- Headers located on one tile edge
  - Accessible after assembly for rework
  - Minimal impact on structural symmetry
  - Located to minimize line length impacts from antenna control electronics





- Fiber Bragg Grating (FBG) strain sensors:
  - Past work shows promising results
  - Limited by 1 micro-strain minimum resolution
    - Borderline to detect 0.25mm RMS deformations
    - Shape prediction accuracy degradation
  - Temperature dependence
    - Investigating athermal mounting fixture
  - May require dozens to hundreds of sensors to achieve desired accuracy
- Can we use temperature instead?
  - Shape deformations on orbit are thermally driven.
  - Full field measurements possible with cameras
  - CTE deformation is linear
    - Superposition applies -> Valid for LSQ approach
- Other approaches to investigate
  - Combination of first two bullets
  - Regression techniques





#### **Current Status**

- Updated stackup to reduce complexity and cost
- Preliminary PCB layout complete
  - 6 boards + backups
  - Risk reduction: fabricate a single board and test on frame to verify expected pattern
- Simulated performance using Ansys HFSS + Circuit
- Evaluation of expected levels of beam efficiency using antenna model

#### Next Steps

- Design review of antenna to move forward with fabrication
- Finalize layout/oversee fabrication
- Update test plan





- TROPICS will provide the first high-revisit microwave observations of precipitation, temperature, and humidity
  - Pathfinder Mission (one CubeSat) launched in June 2021 EXCELLENT DATA!!
  - Constellation Mission (four Cubesats) launched in 2023 EXCELLENT DATA!!
  - Tomorrow.io will launch a TROPICS follow-on constellation
- CREWSR will provide fully configurable microwave sensing with large aperture from a small satellite platform

